Bianchi modular symbols and p-adic L-functions
نویسندگان
چکیده
In the present paper, we prove that first homology group of Bianchi 3-fold is generated by special modular symbols. Also, construct integral valued p-adic L-function p-ordinary Hecke eigenforms taking Lefschetz-Poincaré Pairing cohomology class attached to forms and symbols on 3-folds. By using generation result, μ-invariant some isotopic components certain vanishes for a positive proportion ordinary prime ideals. The main ingredient proof result analyzing fast convergent series expression integration along
منابع مشابه
OVERCONVERGENT MODULAR SYMBOLS AND p-ADIC L-FUNCTIONS
Cet article est exploration constructive des rapports entre les symboles modulaires classique et les symboles modulaires p-adiques surconvergents. Plus précisément, on donne une preuve constructive d’un theorème de controle (Theoreme 1.1) du deuxiéme auteur [20]; ce theoréme preuve l’existence et l’unicité des “liftings propres” des symboles propres modulaires classiques de pente non-critique. ...
متن کاملAUTOMORPHIC SYMBOLS, p-ADIC L-FUNCTIONS AND ORDINARY COHOMOLOGY OF HILBERT MODULAR VARIETIES
We introduce the notion of automorphic symbol generalizing the classical modular symbol and use it to attach very general p-adic L-functions to nearly ordinary Hilbert automorphic forms. Then we establish an exact control theorem for the p-adically completed cohomology of a Hilbert modular variety localized at a suitable nearly ordinary maximal ideal of the Hecke algebra. We also show its freen...
متن کاملModular Symbols and L-functions
As the rst non-overview lecture in this seminar, we will be setting up a lot of notation, getting comfortable working with modular symbols, and then hopefully discussing some of the major inputs which make the theory work. The rst half of the talk we will work through the example of the unique cusp form of weight two and level 11 on X0(11). In the second half, we will bring in the theoretical r...
متن کاملThe p-Adic L-Functions of Modular Elliptic Curves
The arithmetic theory of elliptic curves enters the new century with some of its major secrets intact. Most notably, the Birch and Swinnerton-Dyer conjecture, which relates the arithmetic of an elliptic curve to the analytic behaviour of its associated L-series, is still unproved in spite of important advances in the last decades, some of which are recalled in Chapter 1. In the 1960’s the pione...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2023
ISSN: ['0022-314X', '1096-1658']
DOI: https://doi.org/10.1016/j.jnt.2023.02.009